# **Condition Based Monitoring For Performance Improvements**



Jochen Ziehmann, 8.2 Consulting AG

- 1. Existing condition monitoring methods
- 2. Short introduction to vibration analysis
- 3. Current status of the technology
- 4. What should operators take into consideration when buying a condition monitoring system
- 5. Future prospects

# Visual Inspection





- Cheap
- Easy to perform
- Can see only some of the gears

#### Vibration Analysis





- "Offline" or "Online" possible
- Main method for Condition Monitoring
- Can see most of the defects
- Problems with slow speed parts
- Not possible to see planetary bearing defects

## Video Endoscope





- Can see defects in detail
- Accepted method for proving defects
- Only parts of the gearbox are inspected
- Some parts are not accessible

#### Metal Particle Sensor





© momac Gesellschaft für Maschinenbau GmbH & Co. KG

- General indication for defects
- Not possible to tell which part is defective
- Still quite expensive

#### Oil Analysis





Source: OELCHECK GmbH

- Analysis of the oil in the lab
- General indication for defects
- Not possible to tell which part is defective

#### Rotor Blade Monitoring



© IGUS - Innovative Technische Systeme GmbH



- Not many products on the market
- Still in early product stage
- Promising results

- 1. Existing condition monitoring methods
- 2. Short introduction to vibration analysis
- 3. Current status of the technology
- 4. What should operators take into consideration when buying a condition monitoring system
- 5. Future prospects

### Example: Shaft Unbalance







#### Sensor Positions



# "Kinematics" Data

| 3          |
|------------|
| 112        |
| 44         |
| 23         |
| 5,87       |
| 31,92 Hz   |
| 17,10 rpm  |
| 26,42 rpm  |
| 100,36 rpm |
| 0,85 Hz    |
| 0,88 Hz    |
| 4,16 Hz    |
|            |

#### E.3 Spur Gear Stages

|                      | Spur gear stage 1 | Spur gear stage 2 |
|----------------------|-------------------|-------------------|
| Teeth wheel          | 91                | 112               |
| Teeth pinion         | 21                | 27                |
| Ratio                | 4,33              | 4,15              |
| Tooth mesh frequency | 152,21 Hz         | 811,80 Hz         |

#### E.4 Bearings

|                              | Manuf. | Туре           | Outer race | Inner race | Cage     | Rollers   |
|------------------------------|--------|----------------|------------|------------|----------|-----------|
| Main bearing                 | SKF    | 240/630        | 3,63 Hz    | 4,35 Hz    | 0,13 Hz  | 3,05 Hz   |
| Planet carrier bearing 1     | INA    | SL18 28/750    | 8,39 Hz    | 9,28 Hz    |          | 11,23 Hz  |
| Planet carrier bearing 2     | INA    | SL18 18/630    | 7,82 Hz    | 8,71 Hz    |          | 10,51 Hz  |
| Planet bearings              | INA    | SL18 5050      | 7,93 Hz    | 10,20 Hz   |          | 11,41 Hz  |
| Low speed shaft bearing 1    | INA    | SL18 28/530    | 56,76 Hz   | 62,00 Hz   |          | 75,59 Hz  |
| Low speed shaft bearing 2    | INA    | SL18 28/630    | 45,64 Hz   | 50,57 Hz   |          | 30,72 Hz  |
| Rotary feedthrough bearing   | SKF    | 6026-2RS1      | 10,97 Hz   | 14,12 Hz   | 0,73 Hz  | 13,16 Hz  |
| Intermediate shaft bearing 1 | SKF    | NU2236ECMA     | 55,43 Hz   | 75,03 Hz   | 3,08 Hz  | 47,17 Hz  |
| Intermediate shaft bearing 2 | NSK    | NU2338 EXM1/C3 | 41,11 Hz   | 60,37 Hz   |          | 73,61 Hz  |
| High speed shaft bearing 1   | SKF    | NU2328ECMA     | 170,78 Hz  | 250,15 Hz  | 12,18 Hz | 153,34 Hz |
| High speed shaft bearing 2   | SKF    | NU234ECMA      | 230,61 Hz  | 309,69 Hz  | 12,81 Hz | 198,44 Hz |
| High speed shaft bearing 3   | SKF    | QJ332          | 147,57 Hz  | 213,23 Hz  | 12,30 Hz | 130,79 Hz |
| Generator bearing DE         | SKF    | 6330M/C3       | 107,94 Hz  | 162,66 Hz  | 12,00 Hz | 142,22 Hz |
| Generator bearing NDE        | SKF    | 6330M/C3       | 107,94 Hz  | 162,66 Hz  | 12,00 Hz | 142,22 Hz |
|                              |        |                |            |            |          |           |

#### How do the signals look like?



Time signal of a defective inner race of a generator bearing

# 8.2

### How do we see defects?



Time signal of a defective inner race of a generator bearing

- 1. Existing condition monitoring methods
- 2. Short introduction to vibration analysis
- 3. Current status of the technology
- 4. What should operators take into consideration when buying a condition monitoring system
- 5. Future prospects

#### Current Status of Vibration Analysis

- 1. It is possible to detect defects in the high speed and intermediate speed stages
- 2. No reliable detection of problems in the planetary bearings
- 3. Some operators don't have access to the measurement data
- 4. Some operators don't get any reports
- 5. Some systems are installed but not running or not collecting data

- 1. Existing condition monitoring methods
- 2. Short introduction to vibration analysis
- 3. Current status of the technology
- 4. What should operators take into consideration when buying a condition monitoring system
- 5. Future prospects

#### Resolution







### Frequency Resolution

- Depends only on recording time
- Recommended:
  More than 30s
  recording time





#### Sampling Rate

- Depends on highest frequency
- Recommended: More than 30 kHz





#### Resampling







#### Operator Access to Data

#### Web-Interface

Operator can download data

#### Mirror-Server

Operator has a copy of the server in the surveillance center

#### Copy by DVD

Operator gets a DVD with data in regular intervals







- 1. Existing condition monitoring methods
- 2. Short introduction to vibration analysis
- 3. Current status of the technology
- 4. What should operators take into consideration when buying a condition monitoring system
- 5. Future prospects

#### Future Prospects

- 1. Better algorithms
- 2. Detection of planetary bearing defects
- 3. More reliable detection with more feedback
- 4. Prediction of remaining life span

## Thank you

